# $\pi^{\rm 0}$ photoproduction off the proton at forward angles using CBELSA/TAPS

Nathan Sparks

#### for the CBELSA/TAPS Collaboration (This work is supported by the National Science Foundation)

Florida State University, Tallahassee, Florida



NSTAR2011 05/18/2011

(日) (日) (日) (日) (日) (日) (日)



#### 1 Introduction

Motivation The CBELSA/TAPS Experiment at ELSA/Bonn

#### 2 Observables

Differential Cross Sections Photon Beam Asymmetries







◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

#### 1 Introduction Motivation

The CBELSA/TAPS Experiment at ELSA/Bonn

2 Observables Differential Cross Sections Photon Beam Asymmetries

3 Summary and Outlook

(日) (日) (日) (日) (日) (日) (日)

#### Baryon resonances have large widths and overlap

## → Difficult to extract resonance parameters from the data

- Differential cross sections and polarization observables
  - Measurements needed off protons and neutrons to all possible final states
  - Full angular coverage is desirable

## Why study pion photoproduction observables?

- Constrain parameters of known resonances
  - Database is  $\pi N$  scattering dominated
- Search for missing resonances
  - Polarization observables provide access to resonances that couple weakly to  $\pi {\rm N}$
- Understand t-channel/u-channel contributions
  - Few measurements are available at very forward/backward angles and/or higher photon energies

## **Beam-Target Polarization Observables**

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - \delta_I \Sigma \cos 2\phi \\ + \Lambda_x (-\delta_I H \sin 2\phi + \delta_\odot F) \\ - \Lambda_y (-T + \delta_I P \cos 2\phi) \\ - \Lambda_z (-\delta_I G \sin 2\phi + \delta_\odot E) \}$$
  $\Leftarrow$  Single-Meson Final States (7 Observables)

| Photon Pol. |          |   | Target Pol. Axis |    |
|-------------|----------|---|------------------|----|
|             |          | х | У                | z  |
| unpolarized | $\sigma$ |   | Т                |    |
| linear      | -Σ       | Н | -P               | -G |
| circular    |          | F |                  | -E |

T, P, and H: J. Hartmann, Parallel Session II-A

## Beam Asymmetries Database for $\overrightarrow{\gamma} \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$ Before New Analysis



SAID website: http://gwdac.phys.gwu.edu

## Beam Asymmetries Database for $\overrightarrow{\gamma} \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$ After New Analysis





◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

## 1 Introduction

#### Motivation The CBELSA/TAPS Experiment at ELSA/Bonn

2 Observables Differential Cross Sections Photon Beam Asymmetries

3 Summary and Outlook

# The CBELSA/TAPS Experiment



#### Sep. 2002 - Dec. 2003

- (un)polarized beam
- liquid H<sub>2</sub>, deuterium
- solid targets •



amorphous radiators

screen

empty position

wires for determination of beam profiles

diamond crystal

#### TAPS

- 512 BaF Crystals
- Forward detector •
  - High Granularity
  - Fast Trigger



## **Experimental Setup**



Tagged Photons ( $E_{e^-} = 3.2 \text{ GeV}$ ):

•  $0.25 \cdot E_{\mathrm{e}^-} \leq E_\gamma \leq 0.95 \cdot E_{\mathrm{e}^-}$ 

→ 800 MeV  $\leq E_{\gamma} \leq$  3000 MeV



## Linearly Polarized Photon Datasets



#### 1610 MeV Coherent Peak

#### Maximum Degree of Polarization:

- 50% for 1305 MeV coherent peak (March 2003 data)
- 40% for 1610 MeV coherent peak (May 2003 data)



#### Introduction Motivation The CBELSA/TAPS Experiment at ELSA/Bon

Observables Differential Cross Sections Photon Beam Asymmetries

3 Summary and Outlook

▲□▶▲□▶▲□▶▲□▶ □ のへで

December 2002 Data: Study of  $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$ 



< □ > < □ > < 亘 > < 亘 > < 亘 > < □ > < □ > <

## Differential Cross Sections for $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$



▲□▶▲□▶▲□▶▲□▶ □ ● ●

## Differential Cross Sections for $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

## Differential Cross Sections for $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



#### CB-ELSA Collaboration, PRL 94, 012003 (2005)

## **Closeup Comparison and PWA Highlights**

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



#### **PWA Highlights**

Bonn-Gatchina PWA found contributions from 3 higher-mass N\* states:

• G<sub>17</sub>(2190), D<sub>13</sub>(2170), and D<sub>15</sub>(2070)



#### Introduction Motivation The CBELSA/TAPS Experiment at ELSA/Box

## 2 Observables Differential Cross Sections Photon Beam Asymmetries



# March and May 2003 Data: Study of $\overrightarrow{\gamma} \mathbf{p} ightarrow \mathbf{p} \pi^{0}$



# Study of Beam Asymmetries in $\overrightarrow{\gamma} \mathbf{p} ightarrow \mathbf{p} \pi^{\mathbf{0}}$

#### Phi bin method

 Polarized cross section for single pseudoscalar meson photoproduction for linearly polarized beam on unpolarized target

• 
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 (1 + P_{\gamma} \Sigma \cos(2\phi))$$

• Fit  $\phi$  distribution for each  $E_{\gamma}$ ,  $\theta^{c.m.}$  bin with  $N(\phi) = A + B\cos(2\phi)$ )  $\rightarrow P_{\gamma}\Sigma = B/A$ 





## $\Sigma$ for $\overrightarrow{\gamma} \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$ : 1305 MeV Coherent Peak



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

## $\Sigma$ for $\overrightarrow{\gamma} \mathbf{p} \rightarrow \mathbf{p} \pi^{\mathbf{0}}$ : 1610 MeV Coherent Peak



・ロト・「日下・(日下・(日下・(日下

#### $\pi^0$ Photoproduction off the Proton

World database greatly enhanced during past several years

- These CBELSA/TAPS data provide nice angular coverage in forward region, which is complementary to previous CBELSA/TAPS data
  - Overall good agreement with previous  $\pi^0$  data in overlapping regions (CB-ELSA, CLAS, GRAAL, LEPS)
- Observables measured over full angular range help in the extraction of resonance parameters in PWA
- Beam asymmetries published in Phys. Rev. C 81, 065210 (2010)
- Cross sections are currently under collaboration review (to be submitted to Physical Review)